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An MR acquisition protocol and a processing method using distributed computing on the European Grid Infrastructure (EGI)
to allow 3D liver perfusion parametric mapping after Magnetic Resonance Dynamic Contrast Enhanced (MR-DCE) imaging are
presented. Seven patients (one healthy control and six with chronic liver diseases) were prospectively enrolled after liver biopsy.
MR-dynamic acquisition was continuously performed in free-breathing during two minutes after simultaneous intravascular
contrast agent (MS-325 blood pool agent) injection. Hepatic capillary system was modeled by a 3-parameters one-compartment
pharmacokinetic model. The processing step was parallelized and executed on the EGI. It was modeled and implemented as a
grid workflow using the Gwendia language and the MOTEUR workflow engine. Results showed good reproducibility in repeated
processing on the grid. The results obtained from the grid were well correlated with ROI-based reference method ran locally on a
personal computer. The speed-up range was 71 to 242 with an average value of 126. In conclusion, distributed computing applied
to perfusion mapping brings significant speed-up to quantification step to be used for further clinical studies in a research context.
Accuracy would be improved with higher image SNR accessible on the latest 3T MR systems available today.

1. Introduction

Liver fibrosis is an important cause of mortality and mor-
bidity and contributes substantially to increase health care
costs in patient with chronic liver diseases [1]. Fibrosis can
lead to cirrhosis, for which the complications such as hep-
atic decompensation, hepatocellular carcinoma, and portal
hypertension involve growing public health concerns. Cir-
rhosis and chronic liver disease were the 10th leading cause
of death for men and the 12th for women in the United States
in 2001, leading to the death of about 27,000 people each year
[2]. Cirrhosis was first considered as an irreversible process,
but, with the growing understanding of hepatic fibrogenesis
mechanisms, more effective treatments have been developed
[3, 4]. However, the latter must be initiated at a specific and
early stage in fibrous development, and their administration
requires regular clinical followup. While histological analysis
after liver biopsy is the gold standard for the diagnosis,

inherent risk of a recognized morbidity and mortality ren-
ders this method unsuitable for clinical monitoring [5, 6].
Furthermore liver biopsies have other limitations such as
interobserver variability and sampling errors [7]. It has been
demonstrated that perfusion imaging has the potential to
detect and assess vascular modifications [8] associated with
liver fibrosis [9]. Several studies, using magnetic resonance
dynamic contrast-enhanced imaging (MR-DCE) to quantify
liver perfusion, have shown that some perfusion parameters
were relevant indicators for liver fibrosis assessment [10–12].
In a previous work, anMRI protocol associated to a dedicated
processing step to quantify liver perfusion was developed
[12, 13]. Several parameters showed significant correlations
between hepatic perfusion modifications and fibrosis stage.
Results demonstrated that MR perfusion imaging could be
a noninvasive method for the clinical followup in patient
with chronic liver diseases. Nevertheless, the evaluation was
restricted to an ROI, and regional variations often met in
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diffuse liver diseases could not be observed. ROI-based
perfusion quantification already requires heavy processing
methods such as image registration, denoising, and data
fitting. Processing time drastically increases and becomes
really prohibitive for clinical application for 2D or 3D
mapping. In this context, parallel computing on distributed
infrastructures such as clusters, grids, or clouds proves to
be an interesting solution. Such infrastructures can bring
significant speedup for a large spectrum of applications from
various scientific domains. They have already been used for
medical imaging as described in [14, 15] but never before
for 3D-liver perfusion mapping. Significant effort has been
put in rendering distributed infrastructures as user friendly
as possible. Nevertheless, new applications still require extra
work for adapting (porting) them on the considered infras-
tructure. This work describes an MR acquisition protocol
and a processing method using distributed computing on
the European Grid Infrastructure (EGI) to allow 3D liver
perfusion parametric mapping after MR-DCE imaging with
theMS-325 blood pool agent. Processing speed, reproducibil-
ity, and accuracy were assessed and adequate acquisition
requirements were defined.

2. Materials and Methods

2.1. Subjects. The study protocol was approved by the local
experimentation ethics committee, and informed consent
was obtained from each patient. Privacy rights of subjects
have always been observed. Seven subjects (4 women, 3
men; average age, 40 ± 12 years; mean weight, 75 ± 8 kg)
were enrolled. Among this group, one healthy subject was
used as control and six patients with chronic liver diseases
were prospectively enrolled (maximum prospective period
of one month) after having had a liver biopsy. Biopsies
were performed by percutaneous sampling of the right lobe
with a 15-gauge needle. All biopsies were 1.5 cm or more in
length. Tissue samples were fixed in buffered formalin and
embedded in paraffin. 4 𝜇m-thick sections were stained with
hematoxylin-eosin-saffron, iron stain, andMasson trichrome
reagents and evaluated by two pathologists. The histopatho-
logical evaluation was performed masked from any clinical
information. Fibrosis was evaluated on trichrome-stained
slides according to theMETAVIR classification [16] (score F0:
absence of fibrosis; score F1: portal fibrosis; score F2: portal
fibrosis with isolated bridges score F3: fibrosis with numerous
bridges without cirrhosis; score F4: cirrhosis).

2.2. 3D MR Dynamic Acquisition. Acquisitions were per-
formed using a SiemensMagnetom SymphonyMaestro Class
1.5T imaging system (Siemens Medical Solutions, Erlan-
gen, Germany). A T

1
-weighted VIBE 3D sequence with a

parallel imaging technique was used (GRAPPA, R-factor
= 2). The sequence parameters were as follows: TE/TR/𝛼,
1.22/2.87ms/12∘; K-space partial filling, 6/8th according to
slice and phase direction; reduction of the slice and phase
encoding step, 63 and 50%, respectively. The plane was
coronal oblique with a rectangular FOV (400 × 300mm2)
for a rebuild matrix of 256 × 192 pixels with right/left phase-
encoding direction. The rationale behind the use of coronal

imaging was to minimize the flow-related enhancement of
the aorta. Moreover, it allowed covering a larger liver volume.
Volume angulation was not systematic and aorta orientation
independent. The exploratory volume was acquired with
a 1-sec temporal resolution with 6.4 cm slab thickness (16
slices of 4mm). The signal was collected using two circularly
polarized phased array coils (CP Body Array and CP Spine
Array) with a bandwidth of 650Hz⋅pixel−1. Acquisition has
begun at the time of injection of the contrast medium (MS-
325;Epix Pharmaceutical, Inc., Lexington, MA, USA), and it
continued for 2 minutes [12, 13]. Patients were instructed to
breathe calmly. All subjects were asked to undergo fast before
MR acquisition. Injection was performed with an injection
rate of 1mL⋅s−1, a posology of 0.03mM⋅Kg−1, and flushed
with 25mL of physiologic saline injected at the same rate.
Finally, sixteen 2D + t volumes with 𝑡 = 120 were acquired
leading to 1920 images per examination.

2.3. Images Preprocessing. Images were first imported on a
personal computer running an in-house developed applica-
tion written in Matlab r2010a (The MathWorks, Natick, MA,
USA).

Due to free-breathing acquisition, spatial shifts linked
to motion had to be corrected. Hence, each volume was
automatically registered. The registration method ignored
nonrigid aspects of liver transformation during breathing.
Only translations and rotations (rigid transformations) were
taken into account. This method consisted in the estimation
of the transformation vector needed to register each moving
images in relation to a static reference image. For each image
from 2D + t volumes, a pixel-basedmethodwas used (iconic
approach) to control the transformation of an input image.
An error measure was used to measure the registration
error between the moving and static image. The reduced-
memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-
Newton algorithm was used to move the control points to
achieve affine rigid registration between both images with
a minimal registration error. Then pixels were interpolated
with a bicubic method.

Secondly, native 2D+ t volumes were converted in to 2D
+ t MS-325 mass concentration maps from a pixel-by-pixel
operation based on the relationship between signal intensity
and MS-325 concentration. The latter was established in a
previous work using a calibration phantom [13].

Thirdly, native arterial and portal input functions, 𝐶
𝐴
(𝑡)

and 𝐶
𝑃
(𝑡), were measured using squared ROIs of 25 pixels

placed by an experienced radiologist (F.P. 12 years of post-
graduate experience in digestive imaging) at the level of the
abdominal aorta close to the cœliac trunk and themain portal
vein. Finally, definitive arterial and portal input functions
were converted into continuous form (function of the time)
instead of vectorial form (discrete form), by an interpolation
using spline curves. Measurements were previously filtered
using a moving average filter to reduce noise effect.

2.4. Image Modeling. Hepatic capillary system was modeled
by a 3-parameter one-compartment pharmacokinetic model
adapted to hepatic dual supply (portal and arterial). The
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Figure 1: Representative liver perfusion parametric maps: arterial perfusion, portal perfusion, mean transit Time (MTT), and Hepatic
perfusion Index (HPI) computed on a healthy subject (a) and on a patient with chronic liver diseases classified F2 according to METAVIR
classification (b).
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Figure 2: Number of completed jobs over time. Each workflow
needs towait for the completion of all its jobs in order to produce the
final result. While most of the jobs finish within 10000 seconds, the
last ones need much more time to complete. These last jobs almost
triple the makespan (from roughly five to fifteen hours).

central compartment includes the hepatic sinusoids and the
space of Disse.The leakage of tracer through venous washout
is carried out exponentially over time and the inverse of the
constant of elimination is the mean transit time (MTT). The
equation describing this model is as follows:

𝐶 (𝑡) = 𝜌 [𝐶
𝐴
(𝑡 − 𝜏
𝐴
) × 𝜙
𝐴
+ 𝐶
𝑝
(𝑡 − 𝜏
𝑃
) × 𝜙
𝑃
] ⊗ 𝑒
−𝑡/MTT,

(1)

where ⊗ designates the convolution product and 𝜌 the
volemic mass considered to be equal to 1 g⋅mL−1. The param-
eters, 𝜙

𝐴
and 𝜙

𝑃
, are the arterial and portal perfusion,

respectively, expressed as mL⋅100 g−1⋅min−1. 𝐶
𝐴
and 𝐶

𝑃
, are

respectively, the arterial and portal input functions. The two
delays, 𝜏

𝐴
and 𝜏

𝑃
, take into account the temporal offset

between central compartment input and measured input
from arterial and portal ROIs. While 𝜙

𝐴
, 𝜙
𝑃
, and MTT

are model parameters, delays are independent of the fit
procedure. The hepatic perfusion index (HPI), defined as
the arterial perfusion to total perfusion (arterial + por-
tal perfusion) ratio, was also calculated. For each part of
the image, pixel-by-pixel tissular time activity curves were
obtained and a nonlinear least-square fit was performed
according to the model previously described (1) using the
Levenberg-Marquard algorithm. Because some coefficients
are closely connected, in particular portal perfusion and
arterial perfusion with arterial and portal delay, the results
of optimization were strongly influenced by the choice of
starting coefficients, and algorithm may converge to local
minima. In order to improve the robustness and reliability
of optimization, but also to avoid any convergence to local
minima, the algorithm needed to be started with a grid of
pseudorandom starting points generated within two bounds
(multistart technique). So, each fit procedure was done two-
hundred-fold, with two-hundred different initializations. For

each fit procedure, delays were determined as the time
between the beginning of tissular enhancement and the
beginning of arterial enhancement in celiac trunk. These
starting points are chosen as the maximum of second-order
derivative of tissue time activity curve and arterial input
function. From this step, three perfusion parametric maps
were obtained, one for each parameter of the model used.

2.5. Distributed Processing. The processing step was paral-
lelized and executed on EGI within the biomed virtual orga-
nization (VO). The parallelization was handled at the input
data level, by splitting each volume into several pieces. Each
piece was processed by independent jobs running in parallel
on multiple grid resources and eventually merged.The whole
processing operationwasmodeled and implemented as a grid
workflowusing theGwendia language [17] and theMOTEUR
workflow engine [18]. The splitting and merging algorithms
were developed in C++, while the processing algorithm was
developed in Matlab. All three programs were compiled on a
grid compliant operating system (CentOS) and deployed on
the fly on the grid nodes. For the Matlab code we used the
Matlab Compiler and the Matlab Compiler Runtime (MCR).

The interface with the grid resources was provided by
the VIP web platform (https://vip.creatis.insa-lyon.fr/) [19].
A specific cartography workflow was developed for this
application and integrated into the VIP platform.

The user uploaded the input volumes on the grid and
launched the processingworkflow from aweb portal. In order
to evaluate the speedup provided by our parallel approach,
the total CPU time to make span ratio was determined. The
makespanwas defined as the time elapsed between the launch
and the completion of the workflow, and the total CPU time
as the sum of CPU times of all jobs in a workflow.

2.6. Statistical Analysis. In order to evaluate the reproducibil-
ity of our distributed computing algorithm, the 3D mapping
procedures (workflow) were repeated three times for each
subject. Relative standard variation (coefficient of variations)
was thenmapped for each parametricmap for all patients and
defined as the standard deviation to arithmetic mean ratio.

Next, to evaluate the accuracy of our method, results
between ROI-based quantification method described in [12]
and the method presented in this paper were compared.
Quantitative perfusion parameters from three ROIs were
calculated and averaged.Thedifference betweenmethodswas
evaluated using the Bland-Altman representation for each
perfusion parameters, the Spearman’s coefficient calculation,
and the nonparametric Wilcoxon test.

3. Results

3.1. Subjects. Among the 6 biopsied patients, histological
results were as follows: 2 patients were scored F0, 3 patients
scored F2, and 1 patient scored F4.

3.2. Quantification Results. A representative set of 2D para-
metric maps extracted from 3D volumes on the healthy
patient (METAVIR F0) is shown in Figure 1. Perfusion
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Figure 3: Bland-Altman representations computed for each perfusion parameters: (a) arterial perfusion, (b) portal perfusion, and (c) mean
transit time quantified with the ROI-based method and the distributed method.

Table 1: Quantified mean values of perfusion parameters for all
subject obtained with the two compared methods.

Method Arterial perfusion
(mL⋅min−1 ⋅100 g−1)

Portal perfusion
(mL⋅min−1⋅100 g−1)

MTT
(s)

ROI-based
(reference) 32.9 ± 20.8 78.7 ± 31.7 7.5 ± 3.8

3D (presented) 40.7 ± 10.2 57.9 ± 20.6 8.9 ± 1.6

parameters values computed from the two compared meth-
ods are summarized in Table 1. Then, parameter values were
stratified according to the fibrosis severity. Results corre-
sponding to the advanced stage (METAVIR stage ≥ F2) and
early stage (METAVIR stage < F2) are presented in Table 2.

3.3. Statistical Analysis. A significant correlation was
observed between ROI-based method and distributed
method for each parameter. Spearman’s coefficients (𝜌)
were 0.86, 0.92, and 0.80 (𝑃 < 0.01) for arterial perfusion,
portal perfusion and MTT, respectively. Regarding the
Wilcoxon test and the Bland-Altman representations
(Figure 3), significant difference was shown between
compared methods. However, Bland-Altman representations
showed a systematic decrease of MTTs values calculated

with distributed method compared to ROI-based reference
method.

Aboutmethod reproducibility, all computed relative stan-
dard variation maps were null or negligible.

3.4. Distributed Processing Performance. Themajor drawback
of the perfusion-based method, its prohibitive computing
time, has been overcome with the help of the EGI. By using
the resources of distributed European infrastructure, 1 CPU
year (corresponding to twenty-one 3D mapping procedures)
was computed in only 9.5 days. The speedup varied among
the 21 workflows from 20 to 94 with an average value of
48. The average error ratio for the experiments presented
here was of 18%, with a maximum of 43% for one of the
workflows. As shown in Figure 2, the late completion of
the last jobs significantly increases the makespan. Most of
the jobs finish within 10000 seconds. Nevertheless, a small
percentage of the jobs need much more time to complete.
These are typically failed jobs that need to be resubmitted
one or multiple times. The workflow needs to wait for the
completion of all jobs in order to produce the final result.
Thus, for the experiments presented here, the makespan was
almost tripled (from roughly five to fifteen hours) because of
these late jobs. Similar results have been reported in other
studies such as [20], where the authors propose a dynamic
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Table 2: Mean values of perfusion parameters stratified according to fibrosis severity (advanced, METAVIR stage ≥ 𝐹2 and not advanced,
METAVIR stage < 𝐹2) obtained with the presented method.

Fibrosis stage Arterial perfusion (mL⋅min−1⋅100 g−1) Portal Perfusion (mL⋅min−1⋅100 g−1) MTT (s)

stage < 𝐹2 3D 35.0 ± 7.1 72.9 ± 26.3 8.7 ± 1.2
Ref 25.6 ± 6.3 92.6 ± 26.3 6.9 ± 1.1

stage ≥ 𝐹2 3D 44.9 ± 10.9 47.6 ± 7.5 9.1 ± 2.1
Ref 60.4 ± 12.3 68.2 ± 7.5 8.0 ± 5.2

load balancing approach in order to improve performance.
Nevertheless, the dynamic load balancing approach proposed
in [20] only works for Monte-Carlo-based simulations.

4. Discussion

The presented method was reproducible and results were
correlated with ROI-based reference method run locally on
a personal computer. The quantified parameters were found
to be in the same range as those obtained with the reference
ROI-based method and those related in the literature [9, 10,
12]. Nevertheless, patient-wise, quantified values were slightly
modified even if the shift was not found significant. Indeed,
compared to the ROI-based method, blood flow quantified
with the presented 3D method is overestimated whereas;
on the contrary, MTTs are underestimated. Additionally,
for each parameter, standard deviation observed with 3D
methods run on EGI was found lower compared to the ROI-
based method. When results are globally stratified according
to fibrosis severity, the difference between mean values for
each parameter computed with presented method is system-
atically lower than with ROI-based method. These findings
confirm the smoothing effect induced by 3D quantification
algorithm. Indeed, in ROI-based estimation method, arterial
and portal delays are optimally set by user. However, these
delays depend on spatial location and take into account
the time shift between the measured input functions and
the position where modeling takes place in parenchyma.
Hence, manual setting is not possible in the 3D case, and
an automatic estimate of both delays was mandatory. Due
to relatively low image signal-to-noise ratio (SNR) of about
eighteen, this step requires hard smoothing filtering, affecting
quantification results with the acquisition data currently
available. Another limitation is the restricted exploration
volume. Indeed, to keep an acceptable SNR acquired with a
high temporal resolution of 1 sec, the number of encoding
steps in the slice-encoding direction was limited and the
whole liver volume was not covered. These restrictions (SNR
and coverage) can be overcome with the latest imaging
MR systems with improved acquisition capabilities using
32 receiver channels with multiple element array coils. An
SNR value of 80 was measured based on preliminary test
performed at our institution with a 3T GEHC MR 750
(GEHC, Milwaukee, WI, USA) with 32 ch body coil. The
parallelization of the method brings significant speedup and
renders it feasible despite its prohibitive computing time.
Nevertheless, performance can be still significantly improved.
Currently the poor scheduling of the last tasks is largely due
to platform heterogeneity and multiple task resubmissions

caused by high error ratios. Data transfers account for most
of the errors, while the rest aremostly application failures due
to improper grid node configuration.

As future work, scheduling will be improved by taking
into account these considerations.

To conclude, this preliminary study demonstrated that
the described method allows 3D liver perfusion quantifica-
tion within a reasonable processing time. It is now suitable
to be used for similar clinical studies in a research context.
While the distributed processing method was validated com-
pared to the ROI-based quantification, such fully automatic
processing requires high-quality images. The required SNR,
together with a high temporal resolution and large volume
exploration, can now be achieved on the latest 3T MRI
systems available. Further work will have to demonstrate
the interest of parametric 3D perfusion maps for fibrosis
assessment on a larger number of subjects with chronic liver
disease.
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